Зачем тренировать медленные мышечные волокна?

Лечение

В первые сутки пациенту следует соблюдать покой и прикладывать к травмированной конечности компрессы со льдом. Холод уберет отеки, предупредит образование гематом и уменьшит боль в мышцах. Массаж и тепловые процедуры запрещены, они только ухудшат состояние больного и замедлят выздоровление.

Холодный компресс можно дополнить магнитотерапией. Аппаратная процедура восстанавливает кровообращение в травмированных тканях, убирает дискомфортные ощущения и отеки, стимулирует регенерацию и успокаивает воспаление.

Эвакуация крови

Если рядом с местом надрыва образовалась гематома, в подкожный слой вводят специальную иглу и проводят аспирацию (откачивание) крови. Эвакуацию застоявшейся жидкости повторяют и на вторые сутки, чтобы снизить риск образования тромба.

Гипсовая повязка

При крупных надрывах на травмированные участки накладывают гипсовую повязку. Она обездвижит поврежденную конечность и защитит мягкие ткани от нагрузок. Мышечным волокнам необходим покой для быстрого восстановления. Особенно, при поперечных надрывах.

Пероральные препараты

Снять симптомы мышечного надрыва помогают анальгетики и миорелаксанты. Препараты первой группы притупляют боль. Миорелаксанты убирают спазмы и расслабляют мышцы, ускоряя их регенерацию. Препараты второй группы не назначают при сердечной и почечной недостаточности, глаукоме, обширных травмах.

Пациентам с надрывами мышечных волокон также противопоказаны нестероидные противовоспалительные средства. Они не ускоряют регенерацию мягких тканей, но ухудшают работу печени и обменные процессы в организме.

Препараты для наружного применения

Анальгетики дополняют мазями или гелями. Они бывают обезболивающими, противовоспалительными и разогревающими. Мази нужно втирать 2–3 раза в день легкими массажными движениями. Препараты для наружного применения уберут отеки, покраснение и припухлость.

Лечение ударно-волновой терапией

Пациентам с микротравмами и надрывами, не требующими оперативного вмешательства, назначают курс ударно-волновой терапии.

Поврежденную зону обрабатывают инфразвуком. Акустические волны улучшают кровообращение в мышечных волокнах и сухожилиях, стимулируют выработку коллагена для быстрой регенерации и снимают отеки. Ударно-волновая терапия возвращает суставам подвижность, а также убирает воспаление и спазмы.

Процедура также укрепляет мышцы и сухожилия, снижая вероятность повторных надрывов и разрывов. И она, в отличие от пероральных препаратов, не имеет противопоказаний и побочных эффектов.

Электротерапия

Электротерапия работает по принципу ударно-волновой, но вместо инфразвука использует слабые разряды тока. Электрические импульсы восстанавливают мышечные ткани, помогают при воспалении, спазмах и сильных отеках.

Процедура противопоказана при эпилепсии, беременности, высокой температуре и наличии кардиостимулятора.

Стретчинг и плавание

Постепенно к аппаратным процедурам добавляют лечебную физкультуру. Пациент начинает с легких разминок и растяжек. Стретчинг улучшает подвижность мышц и суставов, но его нужно выполнять строго по инструкции.

Травмированные части тела нельзя перегружать. Если во время растяжки появляются болезненные ощущения, нужно либо прекратить занятие, либо уменьшить амплитуду.

Пациентам с надрывами мышц полезно плавание. Занятия в бассейне улучшают кровообращение в мягких тканях, снимают дискомфортные ощущения и спазмы. Если травмированы икроножные или бедренные мышцы, плавание можно дополнить велотренажером, но тренироваться нужно под наблюдением специалиста.

Лечение надрывов длится от 1,5 до 2–3 месяцев. Конечно, если пациент своевременно обратиться к травматологу и будет соблюдать все рекомендации. Домашние массажи, примочки и другие альтернативные процедуры лишь замедляют выздоровление, а самодиагностика нередко заканчивается неправильными диагнозами и деформацией мягких тканей.

Инструкция по определению своего повторного максимума

Прежде всего, выберите упражнение, которое у Вас получается очень хорошо. Его Вам делать приятно и техника даётся легко. Для начинающих в целях тестирования подходят следующие упражнения:

В идеале это должно быть простое односуставное упражнение. В тренажёрном зале можно выполнить:

и некоторые другие упражнения.

Итак, решите, какое именно упражнение Вы будете использовать и начните определение повторного максимума.

Тест стоит проводить в отдельный от тренировок день. Хорошенько разомнитесь и выставьте на снаряде вес, который Вы можете одолеть не менее 8 раз. Сделайте с ним подход из 6 повторений.

Затем увеличьте вес примерно на 10%, отдохните 2-3 минуты, и снова проделайте подход в данном упражнении, сделав 3-4 повторения.

Далее вновь увеличьте вес на 5-10%, отдохните 3 минуты и снова сделайте несколько повторений (3-2), не доводя усилия до отказа.

Таким образом, продолжайте эту процедуру до тех пор, пока не достигнете такого веса, который будет Вам по силам лишь в одном технически точном повторении. Убедитесь, что вес, увеличенный на 1-2% Вам уже не по силам.

Если Вы используете упражнение жим штанги лёжа на наклонной или на горизонтальной скамье, обязательно позовите на помощь партнёра, который будет следить за Вами и «спасёт» Вас, если не справитесь.

Прекратите выполнение теста, если почувствуете малейшие признаки травмы или перенапряжения: боль в мышцах или в суставах, неудобство траектории упражнения, потемнение в глазах.

Затратив примерно 15 минут Вы узнаете, на что способны в данном упражнении.

Рост и атрофия мышц. Общепринятая модель

Строго говоря, скелетные мышцы состоят не из клеток, а из мышечных волокон, каждое из которых представляет собой синцитий, то есть результат слияния нескольких клеток. Слившиеся клетки объединили цитоплазму, но не ядра, поэтому мышечное волокно содержит несколько ядер (миоядер, как их иногда называют), равномерно распределенных по его длине, и каждое ядро окружено рибосомами, в которых происходит синтез белка. Многоядерность мышечному волокну необходима. Дело в том, что оно гораздо крупнее других клеток, его длина обычно равна длине скелетной мышцы и у взрослого человека может достигать 20 см при толщине до 100 мкм. Рост мышцы происходит за счет синтеза белка. Чем активнее она растет, тем больше белка требует, причем нужны ей не только актин с миозином. Значительная часть синтетической активности уходит на образование рибосом, для чего необходимо несколько сотен разных белков. Любые заминки с белковым синтезом затормозят гипертрофию мышцы. Очевидно, одно ядро просто не в состоянии обеспечить большое мышечное волокно достаточным количеством РНК, а если бы и смогло, белки потом пришлось бы перемещать из одного центра на огромные по клеточным меркам расстояния, для чего нужна развитая транспортная система. В такой ситуации рациональнее иметь несколько ядер и центров белкового синтеза.

В мышечном волокне происходит не только синтез белка, но и его распад (протеолиз). От соотношения этих процессов зависит, растет мышца или атрофируется. Чем активнее растет мышца, тем больше ядер должно содержать одно волокно (рис. 1). Необходимое количество ядер мышечное волокно добирает, присоединяя сателлитные клетки. Эти недифференцированные клетки лежат прямо на мышечном волокне. В случае необходимости они дифференцируются, давая начало новым мышечным волокнам, или сливаются с уже существующими, увеличивая количество ядер в нем.

Рисунок 1. Синтез белка зависит от количества миоядер и их активности. Баланс между синтезом и деградацией белка определяют размер мышечного волокна.

Согласно традиционным представлениям, при мышечной атрофии белковый синтез ослабевает, протеолиз набирает силу, и мышечные волокна уменьшаются в размерах, при этом происходит избирательный апоптоз лишних миоядер внутри живого волокна. Их количество регулируется таким образом, чтобы объем цитоплазмы, приходящейся на одно ядро, был всегда постоянным (рис. 2). Согласно этой модели, выросшее, а потом атрофировавшееся мышечное волокно неотличимо от волокна, которое никогда не тренировали. Такая модель не предполагает наличия мышечной памяти.

Рисунок 2. Растущее мышечное волокно получает дополнительные миоядра из сателлитных клеток, при атрофии оно теряет ядра в результате избирательного апоптоза. Модель не предполагает наличия мышечной памяти.

Изучение волокон 1 типа

Хотя пока исследований очень мало, отдельные работы показывают, что у медленносокращающихся волокон неплохой потенциал. Например, результаты исследования Митчелла с соавторами (1) следующие: при доведении подхода до отказа тренировка с малой нагрузкой (3 сета с 30% от 1ПМ) вызвала приблизительно такую же гипертрофию, как более интенсивная (3 сета с 80% от 1ПМ). При этом, хотя разница не статистически значимая, высокоинтенсивная нагрузка чуть больше стимулировала волокна 2 типа (15% прибавки против 12%), а низкоинтенсивная – волокна 1 типа (19% прибавки против 14%).

Но уже ясно, что вес на штанге – не единственный фактор роста. И наука начинает подходить к идее, давно понятной интуитивно: волокна 1 типа максимально стимулируются продолжительными подходами с небольшим весом, а волокна 2 типа лучше отзываются на короткие сеты с большими отягощениями.

Большинство исследований проводится на нетренированных участниках, но у спортсменов с большим опытом результаты могут быть иными. Если мы рассмотрим исследования на тренированных людях, то найдем подтверждения этому предположению. Бодибилдеры обычно набирают большой тренировочный объем, работая в среднем числе повторений и накапливая усталость (4), а для пауэрлифтеров (5) и тяжелоатлетов важнее рабочий вес и/или скорость движения. Вполне закономерно, что у бодибилдеров заметно преобладает гипертрофия волокон 1 типа по сравнению с силовиками (2).

Принимая во внимание все эти данные, можно заключить, что тренировки различной интенсивности могут привести к схожей общей гипертрофии (1, 6-8), но будут варьироваться темпы роста разных типов волокон. Однако, как и со многими предметами, окончательного научного вердикта нет: два исследования (с несколько различающимися условиями проведения) показали, что высокоинтенсивные тренировки эффективнее для гипертрофии вне зависимости от типов волокон (9,10). Но есть нюанс

Исследования, в которых уравнивается объем проделанной работы, показывают преимущества высокой интенсивности для гипертрофии всех типов волокон (10,11). Если же объем не сопоставляется, то тренировки различной интенсивности приводят к схожим результатам

Но есть нюанс. Исследования, в которых уравнивается объем проделанной работы, показывают преимущества высокой интенсивности для гипертрофии всех типов волокон (10,11). Если же объем не сопоставляется, то тренировки различной интенсивности приводят к схожим результатам

Однако, как и со многими предметами, окончательного научного вердикта нет: два исследования (с несколько различающимися условиями проведения) показали, что высокоинтенсивные тренировки эффективнее для гипертрофии вне зависимости от типов волокон (9,10). Но есть нюанс. Исследования, в которых уравнивается объем проделанной работы, показывают преимущества высокой интенсивности для гипертрофии всех типов волокон (10,11). Если же объем не сопоставляется, то тренировки различной интенсивности приводят к схожим результатам.

Бёрд с соаворами (12) сравнивал увеличение синтеза белка в ответ на тренировки с различными протоколами: работа с 90% от 1ПМ до отказа; работа с 30% от 1ПМ такого же общего объема, как с 90%; работа с 30% до отказа.

Выводы: при работе до отказа уровни синтеза белка были схожими, а тренировка с 30% до отказа вызвала вдвое больший подъем, чем тренировка с 30%, уравненная по объему с 90%.

Разумеется, краткосрочный подъем синтеза белка после отдельной тренировки может не обеспечивать гипертрофии в перспективе, но уже 2 исследования показали, что работа до отказа с различной интенсивностью приводит к сходным результатам (1,6).

Быстро сокращающиеся мышечные волокна ( II-тип)

1. Быстро сокращающиеся волокна делятся на 2 группы:

  •  быстро сокращающиеся IIa — быстрые оксидативные (используют кислород, чтобы преобразовать гликоген в АТФ);
  •  быстро сокращающиеся IIb — быстрые гликолитические (используют АТФ, который хранится в мышечных клетках в виде гликогена, чтобы вырабатывать энергию).

2. Быстро сокращающиеся волокна имеют высокий порог активации, поэтому включаются в работу только тогда, когда потребность в силе будет больше, чем могут обеспечить медленно сокращающиеся волокна.

3. Быстрым волокнам требуется меньше времени, чтобы достичь пиковой силы. К том же они могут генерировать больше силы, чем медленные волокна.

4. Хотя они генерируют больше силы, но и быстрее устают.

5. Мышцы, отвечающие за создание движения, в большей степени состоят из быстрых волокон.

6. Тренировка для силы и прочности увеличивает количество быстро сокращающихся мышечных волокон, задействованных в конкретном движении.

7. Быстро сокращающиеся волокна отвечают за размер и выразительность мышц.

8. Быстрый тип волокон называется «белыми волокнами», так как плохо снабжается кровью и не имеет такого насыщенного цвета, как второй тип.

Как видно из вышеперечисленного, характеристики быстро сокращающихся волокон требуют тренировок на силу и прочность, а также на развитие взрывной силы. Если вы хотите по максимуму использовать быстрые волокна в своих тренировках для повышения силы и прочности, вот несколько конкретных методов, которые в этом помогут.

Методы тренировки для быстро сокращающихся волокон:

– Тренировки с тяжелым весом заставляют мышцы активировать больше мышечных волокон. Чем тяжелее вес, тем больше быстро сокращающихся волокон будет вовлечено в работу.

– Выполнение взрывных движений, а также упражнений на прочность с использованием штанги, гирь или гантель, обеспечит работу большего количества мышечных волокон.

– Быстро сокращающиеся волокна быстро устают. Поэтому надо сосредоточиться на использовании тяжелого веса, но только до определенного числа повторений (например, от двух до шести), чтобы достигнуть максимального эффекта.

– Поскольку быстрые волокна быстро истощают энергию, во время тренировок требуются более длительные периоды отдыха, чтобы мышцы-двигатели имели достаточно времени восстановиться и пополнить запасы АТФ. Поэтому после каждого взрывного или силового упражнения стоит делать паузы продолжительностью в 60-90 секунд.

Генетика определяет количество каждого из типов мышечных волокон в нашем теле. Тем не менее, понимание того, какой именно, быстро- или медленно сокращающийся, тип является доминирующим, поможет выстроить правильную программу тренировок. Поэтому, если обнаружите, что, как правило, придерживаетесь тренировок на выносливость, и они относительно легко вам поддаются, вы, вероятно, являетесь обладателем большого количества медленно сокращающихся волокон. И наоборот, если предпочитаете физическую нагрузку, которая предусматривает короткие взрывные движения или тренировки с большим весом, — в вашем теле доминирует быстро сокращающийся тип волокон. 

Программа упражнений, которая применяет правильные стратегии тренировок для ваших мышечных волокон, поможет максимизировать эффективность нагрузок.опубликовано econet.ru

Таблица характеристик типов мышечных волокон

Характеристики

Медленно сокращающиеся

Быстро сокращающиеся IIa

Быстро сокращающиеся IIb

Генерирование силы

Низкий уровень

Средний уровень

Высокий уровень

Скорость сокращения

Низкий уровень

Высокий уровень

Высокий уровень

Уставаемость

Низкий уровень

Средний уровень

Высокий уровень

Гликолитическая способность

Низкий уровень

Высокий уровень

Высокий уровень

Оксидативная способность

Высокий уровень

Средний уровень

Низкий уровень

Снабжаемость кровью

Высокий уровень

Средний уровень

Низкий уровень

Митохондриальная плотность

Высокий уровень

Средний уровень

Низкий уровень

Выносливость

Высокий уровень

Средний уровень

Низкий уровень

Присоединяйтесь к нам в Facebook , , Одноклассниках

Немного об экономии энергии

Как я и говорил, организм делает всё для того, чтобы:

  1. Сэкономить как можно БОЛЬШЕ энергии (именно поэтому мы запасаем лишнюю энергию в виде жира).
  2. Потратить как можно МЕНЬШЕ энергии в любой работе (поэтому все мы ленивые от природы).

Это позволяло выживать нам на протяжении ДЕСЯТКОВ ТЫСЯЧ лет. Наши предки в одну неделю могли наслаждаться мясом убитого животного, а потом две, или больше, недели практически голодать, питаясь одними кореньями (земледелие появилось позже).

Поэтому наш организм был научен тому, что для того, чтобы выжить в жёстких условиях естественного отбора (хищники, болезни, голод и т.д.) надо экономить полученную энергию!

Он это делает при любой возможности, например:

  • Система накопления питательных веществ (запасаем излишки пищи в жир, а не выводим из организма);
  • Мышечная адаптация (мышцы не будут расти без увеличения нагрузки, т.е. без ЖЁСТКОЙ необходимости предостеречь себя от опасности);
  • Волосы на теле, мозоли на руках от постоянной работы, загар от солнца (даже это сделано для экономии энергии, т.к. это тоже вынужденная адаптация к внешним воздействиям);

Организм адаптируется ТОЛЬКО ПО НЕОБХОДИМОСТИ, типа: «Лучше вырастить волосы на теле, чем замёрзнуть от холода», «Лучше вырастить мозоли на руках, чем получить заражение крови и умереть» и т. д. Он не будет этого делать, если вам это не нужно! Он ЭКОНОМИТ ЭНЕРГИЮ!

И так далее…

Да что говорить, всё в нашем теле сделано для того, чтобы лучше выживать в окружающих условиях! Если организм где-то может сэкономить энергию, он это сделает! Поэтому нам всегда удобнее идти, чем бежать; стоять, чем идти; сидеть, чем стоять; лежать, чем сидеть и т.д.

Как вы уже, наверное, поняли, ЛЕНЬ – это тоже АДАПТАЦИОННЫЙ МЕХАНИЗМ организма, для экономии энергии.

Именно с целью экономии энергии, нашим организмом был создан ещё один удивительный механизм – разные типы мышечных волокон.

Медитация

Есть множество различных техник медитации, но остановимся на самой, казалось бы, простой — посидеть в тишине с закрытыми глазами, сосредоточившись на дыхании. Даже такое на первый взгляд простое упражнение может вызвать массу препятствий. В первый раз будет крайне трудно просидеть даже минуту без назойливых мыслей, обуревающих сознание. Тем не менее, постепенно останавливая поток сознания и возвращаясь к дыханию, вы поможете своему мозгу перезагрузиться

Ежедневные практики помогают избавиться от тревожности, уменьшить воздействие стресса и научиться контролировать внимание.

Исследования доказывают, что те, кто практикуют медитацию каждый день, имеют более толстый слой серого вещества именно в тех зонах, которые отвечают за внимание и психологическую гибкость. Тренировка мозга при помощи медитации приводит к тому, что со временем нужно прикладывать все меньше усилий для фокусировки вашего внимания

А это значит, что со временем вам станет легче концентрироваться в обычной жизни, когда это необходимо — например, на важном совещании или сдаче экзамена.

Тренировки с большими весами для волокон 2 типа

Конечно же, огромное количество исследований подтверждает, что высокоинтенсивные силовые тренировки приводят к увеличению волокон 2 типа (2)

Обратите внимание – речь именно о высокой интенсивности. Это вовсе не означает, что медленносокращающиеся волокна обладают маленьким потенциалом для гипертрофии; но при значительных нагрузках (более 50% от 1ПМ) лучше растут быстросокращающиеся

Наши представления о гипертрофии волокон разных типов все же основаны на опытах в лабораторных условиях, а не на изучении реальных тренировок в зале (2, 3). Работа доктора Эндрю Фрая 2004-го года, в которой он скомпилировал данные многих исследований, убедительно показывает, что на интенсивные тренировки лучше всего отзываются волокна 2 типа.

Однако, когда нагрузка опускается ниже 50% от 1ПМ, их начинают обгонять по темпу роста волокна 1 типа (хотя не достигается такой же уровень гипертрофии, как при более высокой интенсивности). Если руководствоваться только этими данными, то пересматривать тренировочный подход просто незачем.

Но у регрессионного анализа, который применял в работе Фрай (2), есть свои недостатки. Во-первых, не так много проведено исследований низкоинтенсивных тренировок (2, 3), и совсем мало научных работ, непосредственно сравнивающих эффекты высокой и низкой интенсивности на гипертрофию различных типов волокон.

Если же еще ознакомиться с новыми данными об увеличении мышечных волокон в ответ на нагрузки различной интенсивности (1), то становится понятно, что мы недооценивали волокна 1 типа.

Красные и белые мышечные волокна

Красные мышечные волокна

Красные мышечные волокна

Медленные волокна называют красными из-за красной гистохимической окраски, обусловленной содержанием в этих волокнах большого количество миоглобина — пигментного белка красного цвета, который занимается тем, что доставляет кислород от капилляров крови вглубь мышечного волокна.

Красные волокна имеют большое количество митохондрий, в которых происходит процесс окисления для получения энергии ST-волокна окружены обширной сетью капилляров, необходимых для доставки большого количества кислорода с кровью.

Медленные мышечные волокна приспособлены к использованию аэробной системы энергообразования: сила их сокращений сравнительно невелика, а скорость потребления энергии такова, что им вполне хватает аэробного метаболизма. Такие волокна отлично подходят для продолжительной и не интенсивной работы (стайерские дистанции в плавании, легкий бег и ходьба, занятия с легкими весами в умеренном темпе, аэробика), движений, не требующих значительных усилий, поддержании позы. Красные мышечные волокна включаются в работу при нагрузках в пределах 20-25% от максимальной силы и отличаются превосходной выносливостью.

Красные волокна не подойдут для подъема тяжелого веса, спринтерских дистанций в плавании, так как эти виды нагрузок требуют достаточно быстрого получения и расхода энергии.

Белые мышечные волокна

Белые мышечные волокна

В быстрых волокнах меньше миоглобина, поэтому они выглядят белее.

Для белых мышечных волокон характерна высокая активность фермента АТФазы, следовательно АТФ быстро расщепляется с получением большого количества необходимой для интенсивной работы энергии. Так как FТ-волокна обладают высокой скоростью расхода энергии, они требуют и высокой скорости восстановления молекул АТФ, которую может обеспечить только процесс гликолиза, потому что в отличие от процесса окисления (аэробное энергообразование) он протекает непосредственно в саркоплазме мышечных волокон, и не требует доставки кислорода митохондриям, и доставки энергии от них уже к миофибриллам. Гликолиз ведет к образованию быстро накапливающейся молочной кислоты (лактата), поэтому белые волокна быстро устают, что в конечном итоге останавливает работу мышцы. При аэробном энергообразовании в красных волокнах молочная кислота не образуется, поэтому они способны долго поддерживать умеренное напряжение.

Белые волокна имеют больший диаметр по сравнению с красными, в них также содержится гораздо большее количество миофибрилл и гликогена, но меньше количество митохондрий. В белых волокнах находится и креатинфосфат (КФ), необходимый на начальном этапе высокоинтенсивной работы.

Белые волокна больше всего подходят для совершения быстрых, мощных, но кратковременных (так как они обладают низкой выносливостью) усилий. По сравнению с медленными волокнами, FT-волокна могут в два раза быстрее сокращаться и развивать в 10 раз большую силу. Максимальную силу и скорость человеку позволяют развить именно белые волокна. Работа от 25-30% и выше означает, что в мышцах работают именно FТ-волокна.

В зависимости от способа получения энергии быстросокращающиеся мышечные волокна делят на два типа:

  1. Быстрые гликолитические волокна (FTG-волокна). Эти волокна используют процесс гликолиза для получения энергии, т.е. могут использовать исключительно анаэробную систему энергообразования, которая способствует образованию лактата (молочной кислоты). Соответственно, эти волокна не могут производить энергию аэробным способом с участием кислорода. Быстрые гликолитические волокна обладают максимальной силой и скоростью сокращений. Эти волокна играют первостепенную роль при наборе массы в бодибилдинге и обеспечивают пловцам и бегунам спринтерам максимальную скорость.
  2. Быстрые окислительно-гликолитические волокна (FTO-волокна), иначе промежуточные или переходные быстрые волокна. Эти волокна представляют собой как бы промежуточный тип между быстрыми и медленными мышечными волокнами. FTO-волокна обладают мощной анаэробной системой энергообразования, но они приспособлены также и к выполнению достаточно интенсивной аэробной работы. То есть они могут развивать значительные усилия и развивать высокую скорость сокращения, используя гликолиз в качестве основного источника энергии, и в то же время, при низкой интенсивности сокращения, эти волокна довольно эффективно могут использовать и окисление. Промежуточный тип волокон включается в работу при нагрузке 20-40% от максимума, но когда нагрузка достигает приблизительно 40% организм уже полностью переключается на FTG-волокна.

Фазы заживления мышечных повреждений (и практическое значение) (Askling, 2007).

Фаза 1: Фаза дегенерации/воспаления

  • Разрыв и некроз (гибель) миофибрилл.
  • Воспалительная реакция: образование гематомы (отек и свертывание крови внутри мышечной ткани). 

Практическое значение: 

Избегайте полного покоя и НПВС (Mirkin, 2016), а также алкоголя, разогрева, массажа и бега (Orchard, 2006). 

Фаза 2: Фаза регенерации

  • Фагоцитоз тканей, подвергшихся некрозу. 
  • Активация и пролиферация сателлитных клеток.
  • Регенерация миофибрилл. 
  • Образование рубцовой ткани.

Практическое значение: 

Давайте нагрузку как можно раньше, чтобы облегчить процесс заживления и уменьшить нарастание рубцовой ткани (Orchard, 2006). 

Фаза 3: Фаза ремоделирования

  • Созревание миофибрилл. 
  • Реорганизация рубцовой ткани. 
  • Возможный фиброз. 

 Практическое значение: 

Выполняйте укрепляющие упражнения (Orchard, 1997; McHugh, 2010). 

Независимо от классификации, все мышечные повреждения проходят через этот процесс. Скорость, с которой это происходит, меняется в зависимости от тяжести травмы. После определения места и степени тяжести повреждения возникает главный вопрос: как использовать эту классификацию для проведения реабилитации?

Ключевой момент — это интеграция. Речь должна идти не столько о произвольных временных рамках, сколько о том, чтобы пациенты последовательно проходили все необходимые контрольные точки реабилитации, прежде чем переходить к следующему этапу.

Мужчины и женщины: различия ММВ и БМВ

Физиология реакций на физическую нагрузку, в том числе и механизмы, определяющие функциональные способности организма у мужчин и женщин принципиально не различаются.

Хотя общая мышечная сила у женщин составляет 2/3 от мужских показателей. И это значит, что мышцы верхних конечностей и туловища у женщин слабее на 40%, а мышцы ног — на 20% в отличие от мужских показателей.

Тем не менее, при исследовании тяжелоатлетов в странах СНГ (в том числе и женщин), были сделаны такие выводы: женщины могут выполнять большой объем работы с высокой интенсивностью наравне с мужским полом.

Поэтому, миф о том, что женщины набирают массу и силу мышц хуже мужчин, не отвечает действительности. Так как одинаковые тренировки оказывают в 99% случаях сходный результат, как на мужской, так и женский организм.

Во внимание нужно брать только % соотношения мышечных волокон, влияние мужских/женских гормонов и спортивно-метаболические отличия. И это все, что нужно знать для того, чтобы тренироваться качественно, результативно и правильно, без вреда для здоровья

И это все, что нужно знать для того, чтобы тренироваться качественно, результативно и правильно, без вреда для здоровья.

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий